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Abstract—A lincar elastic fracture mechanics analysis of matrix cracking in a brittle matrix uniaxially
fiber-reinforced composite due to uniform longitudinal strain is presented. The concentric circular
cylinders model is used while perfect bonding is assumed at the fiber matrix mterfuce. The axvisym-
metric problem of an elastic fiber surrounded by the elastic matrix contaiming an annular crack is
formulated in terms of 4 singular integral equation of the first kind with a Cauchy-type kernel. Four
possible crack configurations are considered as follows : (a) internal annular crack with inner crack
tip away from the interface: (b) internal annular crack with inner crack tip at the interface; (¢)
annulir edge crack with inner crack tip away from the interface: (d) annular edge crack with inner
crack tip at the interfuce (fully cracked matrix). Stress intensity fuctors are given for a wide range
of crack sizes for different ratios of shear moduli. Stress ficlds are presented for a typical brittie
matrix fiber-reinforced composite, SiC/CAS calcium aluminosilicate glass ceramic retnforced with
silicon carbide tibers.

INTRODUCTION

The mechanies of brittle matrix fracture in uniaxially fiber-reinforced composites loaded
by uniform longitudinal tensile strain is considered in the present analysis when the fibers
arc perfectly bonded to the matrix. The high-strength fibers which reinforce the brittle
matrix have in most instances a fracture strain much higher than that of the matrix and
the first matrix cracks appear in a plane perpendicular to the direction of loading. This
phenomenon has been observed in experiments carried out on different materials. In par-
ticular, Prewo and Brennan (1982), Marshall and Evans (1985) and Daniel ¢f of. (1989)
have conducted experiments on glass ceramics reinforeed by SiC fibers.,

The initial theoretical works on this important problem of brittle matrix fracture were
by Aveston et al. {(1971) and by Aveston and Kelly (1973), where vartous assumptions were
made to facilitate the analysis. Subsequent work in this area is duc to Marshall er af. (1985),
Budiansky er al. (1986), McCartney (1987, 1989), Gao et al. (1988) and Sigl and Evans
(1989}, An approximate analytic method was employed by McCartney (1989) to investigate
matrix cracking with perfect bonding between the fibers and the matrix and also with
fractional stip at the interface. Recently, Wijeyewickrema of «l. (1991) considered the case
of matrix cracking when a single elastic fiber is perfectly bonded to a surrounding unbounded
clastic matrix.

The chief objective of this paper is to present a rigorous analysis of the problem of
brittle matrix fracture when there is perfect bonding at the interfuce, within the context of
lincar clastic fracture mechanics (LEFM) where the correct nature of the singular stress
ficlds is preserved.

The problem of a thick-walled clastic cylinder with an annular crack considered by
Erdol and Erdogun (1978) and by Nied and Erdogan (1983) corresponds to the case where
the fibers are replaced by cavities. The solid clastic cylinder with an edge crack investigated
by Keer et al. (1977) corresponds to an elastic fiber with the same material propertics as
the matrix.

FORMULATION OF PROBLEM

It is well known through experimental observations that in general the fibers in a
uniaxial fiber-reinforced composite are not distributed in any particular order. In theorctical
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Fig. 1. An annular matrix crack surrounding the elastic fiber. Approximation to the case of 4
hexagonal array of tibers ina matrix where the concentric circular evlinders model represents a unit
cell

considerations, to overcome this luck of orderly distribution of fibers, an orderly distribution
of fibers such as a square or hexagonal array is assumed (Jones, 1975). When a hexagonal
array of fibers is assumed, due to considerations of symmetry it is suflicient to consider the
unit cell of a fiber surrounded by a tube of matrix which has a hexagonal cylinder for
the outer surfuace. When this hexagonal eylindrical surface is approximated by a circular
cylindrical surface of equal cross-sectional arca so as to make the geometry of the problem
analytically less complex, the concentrice circular eylinders model results. This axisymmetric
madel has been used by many rescarchers investigating the mechanical behavior of com-
posites under longitudinal loading (Hill, 1964a.b: Smith and Spencer, 1970 Steif, 1984 ;
Budiansky ¢r af., 1986 Gao er al., 1988 ; McCartney, 1989 Sigl and Evans, 1989).

The concentric cylinders model and the cylindrical polir coordinate system (r, 0, 2)
used in this analysis is shown in Fig. |, where an infinitely-long clastic fiber of radius « is
perfectly bonded to the elastic matrix which has an outer radius . When a uniaxial fiber-
reinforced composite which has a fiber volume ratio of ¥, is considered, b = o/ !>, Matrix
cracks appear at a uniform longitudinal tensile strain ¢, applied to the systemat = = + ».
The crack plane which is normal to the - axis is taken as the - = 0 plane. The inner and
outer radii of the annular crack are ¢ and o, respectively (¢ < ¢ < b, a < d < b).

When the undamaged composite specimen is loaded longitudinally, there is radial
contraction due to the Poisson’s ratio cffect. Prior to the formation of matrix cracks, the
external surfuce of the entire lateral surlace of the specimen, and hence of cach concentric
circular cylindrical cell, will be stress frec. When the applied strain reaches the matrix
fracture strain, matrix cracks appear and the external surface of the circular cylindrical cell
may not be stress free, since the matrix cracks will produce radial stresses that arise at the
outer boundary. This situation can be physically visualized as the superposition of two
problems: the undamaged uniaxially-loaded composite specimen and a matrix cracked
specimen loaded solely on the cracked surface. The undamaged specimen problem has the
outer boundary stress free: however, the matrix crack problem will have a zero radial
displacement at the outer boundary. The superposition of these two problems will correctly
model the case of interest here.

In the first problem the concentric cylinder model in the absence of the annular crack
is subjected to the uniform longitudinal tensile strain &, while the external surface is
unconstraincd. This problem can be solved with case and the complete stress ficld is given
in Appendix A. The relevant matrix stresses required for the second problem are a!.(r) and
al.(r) given by eqns (A7) and (AS). respectively. Since a,.(r.0) is identically equal to zero,
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the self-equilibrating stresses applied to the crack surfaces in the second problem are those
equal and opposite to the stresses a..(r, 0).

The analytical approach and the notation adopted in solving the problem where the
crack surface tractions are the only external loads, is for the most part similar to that
emploved previously by Wijeyewickrema et af. {1991) to solve the problem of an annular
crack surrounding a single elastic fiber embedded in an elastic full space. For problems where
both the geometry of the problem and the loading is axially symmetric the nonvanishing
displacement and stress components u,. U.. 6,,. 6. .. and g,. can be expressed in terms
of Love's stress function x(r. 2), which is an axisymmetric biharmonic function {Love, 1944,
p. 276 Timoshenko and Goodier, 1970, p. 381). Since = = § is a plane of svmmetry. in
what fotlows the upper half of the representative cell = 2 0 is considered.

For the fiber, Love’s stress function and the corresponding displucements and stresses
which are relevant are given by
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where /(). (i = 1,2, 3) arc unknown functions, J,( ) is the Bessel function of the first kind
of order n. [,( ) is the modified Bessel function of the first kind of order 7 and g, and v,
are the fiber shear modulus and Poisson's ratio, respectively.

For the matrix region. Love's stress function and the corresponding displacements and
stresses that are relevant are given by
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where the functions fi(s). (i =4...., 8) arc to be determined and K,( ) is the modified Bessel
function of the sccond kind of order n where g, and v, are the matrix shear modulus and
Poisson’s ratio, respectively.

The perfect fiber-matrix bonding assumed at the interface results in the continuity
conditions

uMa, 2y = uMa,z), w2y =ul(uz)., 0€:< o, (13

ola. ) =alla.z)., ol@)=0cl(a.2). 0<:< w. (14)
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As discussed previously. the boundary conditions on the external cylindrical surface
of the matrix are taken as

ul(b.2)=0, 0<:-<x, (15
cl.(h,2)=0, 0<:-<=x. (16)

On the plane = = 0, the following conditions apply

¢’ (r.00=0, 0<r<a, o6.(r.0)=0, a<g<r<b, (17
¢l.(r,0)= —p(r). c<r<d, (18)
wWir,0)=0, 0<r<a. (r.0=0. ag<r<c. d<r<h 19)

It is easily verified from eqns (6) and (12) that eqn (17) is identically satisfied. From the
first part of eqn (19) and eqn (3) it can be shown that f,(p) = 0. To formulate the problem
in terms of an integral equation a new unknown function ¢(r) which is related to the
gradient of the crack opening displacement is introduced as follows

=)
fﬁlv"’ (:r W(r.0) = ¢(r). c<r<d (20)
-V

[t can be shown from eyns (9), (20) and the second part of eqn (19) that
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The four boundary conditions at the interfuce eqns (13) and (14) and the boundary con-
ditions on the external surface of the matrix egns (15) and (16) yield a system of six
equations for the unknown functions f;, (i = 1, 2,4, 5,6, 7) in terms of the unknown function
¢(r) and may be expressed as follows
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Infinite integrals required in deriving eqns (22) to (27) can be found in Erdelyi (1954).
Solving the system of six equations given by eqns (22)}-(27), f,, (i = 1, 2, 4-7) can be
expressed as

[ I & A, (1,9

(34)
where A(s) is the determinant and 4,;, (i = 1, 2, 4-7 j = 1-6) are the appropriate elements
of the adjoint of the coefficient matrix of eqns (22)-(27). From eqn (18), which corresponds
to the tractions that are applied to the crack surface, after substituting for /;, (i = 4-8) from
eqns (34) and (21), the following integral equation is obtained :

d
: J [;-.l-—r +k(r, ’)J P()di = —p(r), c<r<d (35)

n

where
k(r.0) = k(r. )+ 2tks(r. 0), (36)

m(r,0)—1 m(r. 1)
ki (r.0) =~ (l—-)l‘ + i (37)
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where K( ) and E( ) are the complete elliptic integrals of the first and second kind,
respectively. The location of the crack in the matrix has a direct bearing on the solution of
the singular integral equation of the first kind, eqn (35). When both crack tips ¢ and d are
located in the matrix, eqn (35) is solved under the crack closure condition

o
J d(r)dr =0, (41)

obtained from the sccond eqn of (19) and eqn (20). Tt is noted that the physical significance
of eqn (41) is that the crack tips are closed at ¢ and d.
The following crack configurations are investigated in detail in the present analysis:

Case 1:  Internal annular crack with inner crack tip away from the interface.

Case I Internal annular crack with inner crack tip at the interface.

Case [11: Annular edge crack with inner crack tip away from the interface.

Cuse 1V : Annular edge crack with inner crack tip at the interfuce (fully cracked matrix).

CASE [: INTERNAL ANNULAR CRACK WITH INNER CRACK TIP AWAY
FROM THE INTERFACE

When the crack tips are located such that ¢ < ¢ < d < b, the dominant kernel in the
integral eqn (35) is the term 1/(r—r). The kernel k,(r, t) has a logarithmic singularity of the
form log |t —r| and k(r, ¢} is bounded in the interval ¢ € r, ¢ € d. The solution of eqn (35)
is of the form

() =(d=1t)""t=c) g\ (1). c<t<d (42)

where g,(¢) is a bounded function. Normalizing the interval (¢, d) by defining

¢(0) = h (1) = (1 =7°)""2F (1), (44)
; d-c
I’(") = P(l’)‘ I\(P' t) = —z_—k(r' ’)~ (45)

the following equations are obtained.,
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(! 1 . Fi(z) ,
7‘:J. I[r:;-i—[\(pt)] (_]—-_?de.—— — P(p). -l<p<l (46)
l Fi(7)
J,| ﬁt—tl—)l’f dr=0. 47)

Here eqn (47) corresponds to the crack closure condition eqn (41) since the crack tips are
closed at ¢ and d. The singular integral eqn (46) is solved together with the additional
condition eqn (47) by using a Gauss-Chebyshev type quadrature formula (Erdogan and
Gupta. 1972).

The mode [ stress intensity factors at the crack tips ¢ and d are defined by

K(e) = lim \/2c=r)sL(r. 0. (48)
K(d) = lim /2(r = d)aL(r,0). (49)

and can be expressed in terms of £,(t) as follows
K(o) = lim /2(r =) p(r) = @} *F (= 1), (50)
K(d) = = lim S2Ad=r)pir) = —al *F,Q1), (51)

where ay = (d - ¢)/2. The compact formulae given by Krenk (1975) is used to obtain F(—1)
and F(1).

CASE I INTERNAL ANNULAR CRACK WITH INNER CRACK TIP AT THE INTERFACE

When the inner crack tip is at the interface, ie. ¢ = a, ky(r, 1) given by egn (39) is no
longer bounded for all r, ¢ in the closed interval ¢, d] and hence the solution of eqn (35) is
no longer described by eqn (42). By adding and subtracting the asymptotic value of
ks(r.1,5) for lurge values of s, from the integrand in eqn (39), k.(r, 1) may be expressed as

ky(rot) = ky(r.0)+ka(r, 1), (52)

where

koylr,t) = J ‘ [/\'—l(r‘ L) =K (r L)) ds+ 157 (r, 1), (53)

R R BRI

B (rotos) = [R5 + Ryss+ Ria] (54)
2\/rl

L[ .
'5,’ (r.1) = ~\/ [Z S|:+ ,;1 Tl:]' (55)

2./rt

ka(roty =13 (r. 1), (56)

Co (‘,((fcl) 2e.(r—a)’ } (s7)

o= {(r+r—2u) Trri=2 =20
Y
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1 atl+x) 31=4) 6(1—a) 2(1-5)
o= | === — . = — —, (= — —, (58)
2 g+xK, 1+ fx, 1+ gk, | + 4k,
where R,. T,,.(i=12.and S,. (i=1..... 6) are given in Appendix B and x, = 3 -4v,,

(i =0.1). Ineqn (53), ky (r. 1) is bounded in [c.d] for all . t and k,,(r, t) is unbounded as r

and r approach «. The singular kernel k.(r, ¢) is identical to that given by Erdogan er al.

(1973) for the corresponding plane strain problem and by Wijeyewickrema et al. (1991) for

the case of an annular crack surrounding an elastic fiber embedded in an elastic full space.
Equation (35) can now be rewritten as

E (Y o L[ [
wJ—rdH-Ef1,(r.t)d>(t)dr+; L) dt = —p(r), a<r<d (59)

where

L(r.0) = 2k, (r. 0, (60)
1:(".1)=k,(r.l)+2[/\'3,(r,l). (6')

and where [:(r. 0) 1s a Fredholm kernel.
The solution of egn (59) is expressed as

) = (d =ty (1=aY'g,(1). a<t<d (62)

and it can be shown (Erdogan ¢t al., 1973) that the characteristic equations required to
determine x and ff are given by

cot nx = 0, (63)
2, cosn(fi+ V) —ds(f+ 1) =dy =0, (64)
where
di = (A+x) (1 +jiny), (65)
dy= =31 =@)(ji+nr,). (66)
dy = (I —@)(A+ry)+(A+n) 0+ a0 ) =G0+ 5 +jik,). 67)
From eqn (63), x = —} which is the expected square root singularity for the crack tip d.

Equation (64) is solved to determine the real constant f# which is a function of the material
properties of the fiber and matrix.
Normalizing the interval (o, d) by defining

1=d:”t+dtv-“, r=d-:-ap+l~l:~~"l, (68)
(1) = hy(t) = (1 =1y (x+ 1) Fa(2), (69)

d—a d—a
Li(p.t) = == 1(r.0), Ly(p.7) = —=1:(r,0). (70)
p(r) = P(p). (71)

eqn (59) can be expressed as
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1" 1
;z_[ {r——;) +L,(p.t)+L;(p.r)}F;(r)(l—r)’(:+l)" dr=—Plp). —-l<p<l.
S -

(72)

Since the crack tips are closed at @ and d, the crack closure condition (41) yields the equation

{
I Fao{(l =tz + 1Y dr = 0. (73)
1

A Gauss-Jacobi-type integration formula (Erdogan er a/.. 1973) s used to solve the singular
integral equation with a generalized Cauchy kernel, eqn (72), together with the crack closure
condition. eqn (73).

The mode I stress intensity factors at the crack tips « and « are defined by

K(d) = lim V20r=d)el(r.0). (74)
K(a) = Iim 2" a—r)f6l(r.0). (75)

It can be shown that
K(dy= =2"(d=a)'gs(d) = — lim 8Ud=ry *p(ry = =2 AVTE(D, (76)
K(a)y =2"u*(c—a)'g,(u) = p* Ii‘r_n2"3(r~u) Pb(r) = 1*ay"Fy(=1), (77

where

A (200 i) =D -

2 (i+Ko) (1 + fin ) sin 2(1 +f9)
and «» = (d—a)/2. In calculating Fy(—1) and F,(1) a formula given by Krenk (1975) is
used.

CASE l1I: ANNULAR EDGE CRACK WITH INNER CRACK TIP AWAY FROM THE INTERFACE

For this crack configuration where ¢ < ¢ < d and d = b the kernel k(r, 1) defined by
eqn (39) becomes unbounded for large values of s when r and r approach the boundary b.
After manipulating & ,(r, ) similar to the procedure adopted in Case I, k(r, 1) is expressed
as

k:(r.l) =k2"(r‘ l)+kL(r.’), (79)
here

ky(r.) = f ' (Ks(r, t,8) = K5 (r . 9) ds+ 15/ (r, 1), (80)

[t}

e (hor i
Ky (r.1.s) = [Rys+ Ryy) ——— =, (81)
2/t
N

Yo = ---f|~:—; X S (82)

2./rt -1
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ka(r.ty= D5 (r. 1), (83)
PO { -1 } "
;,(r.t)—z\/r_l T — (84)

where R.. (i =2.3) and §,. (i = 1.2) are given in Appendix B. In eqn (80). k,(r, 1) is
bounded in [c.h] for all r, r and k.,(r. 1) is unbounded as r and r approach b. The solution
of the integral equation which now has a generalized Cauchy kernel has no power or
logarithmic singularity at the end point which is on the boundary r = b, and the solution
ts of the form

d()=(t—c)" 'g:(1). c<t<b. (85)

From eqn (85) it is seen that ¢(¢) is bounded at ¢ = b. Normalizing the interval (c, b)
by defining

b—c b+c b—c¢ b+c

I=V,5*t+ 57 T=5 p+T. (86)
G(0) = h(r) = (1 =) "2F,\(1). (87)

i h—c
p(ry=P(p). K(p,1) =" 2-'—-k(r. . (88)

the integral cquation s oblained as

1 (! I . F\(7)
| r;p+l\(p'r) dr=-P(p), —-l<p<l (89)

n (1—1)"?

The function F(t) is obtained by using a Gauss-Chebyshev-type quadrature formula
{Erdogan and Gupta, 1972) and solving the singulir integral eqn (89) numerically together
with the additional condition F (1) = 0, to account for the boundedness of ¢(1) at 1 = b.

The mode [ stress intensity factor at the crack tip ¢ is defined by

K(¢) = lim /2(c=r)al(r,0), (90)
and can be expressed as

K(¢) = lim J2Ar=o)(r) = al Fy(—1). 1)

where a; = (h—¢)/2. Here too recourse is made to a formula given by Krenk (1975) to
obtain Fy(—1).

CASE IV: ANNULAR EDGE CRACK WITH INNER CRACK TIP AT THE INTERFACE
(FULLY CRACKED MATRIX)

When ¢ = aand d = b, on the plane = = 0, stress is transferred through the fibers only.
The kernel k.(r, f) given by eqn (39) is now expressed as

kao(r.t) = ky(r.t)+ka(r. 1), (92)

where
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k:,(r.()=f Ka(ro e, )= K4 (rot.5) = RS (r 0. 9] ds + 19 (r. )+ 157 (1. 1), (93)
1]

ka(r.t)= LS (r.t)+ 15 (r.0). (94)

The solution of the integral equation which now has a generalized Cauchy kernel is of the
form

o) = (1—a)'g,(1). a<t<b. (95)

From eqn (95) it is seen that ¢(¢) is bounded at 1 = . Normalizing the interval (. 5)
by defining

b—a b+ua b—a b+u
t= 5T 3. r= 5 p+ 3 (96)
(1) = hy(r) = (1 —1) " *(r+ DIFi(2) (97)
. h—a
pir)y = P(p). Kp.t)= - k(r.0). (98%)

the integral equation is expressed as

LT
: J [t : p+/<(p.z)]i~‘,(r)(l-z) e+ )'dr= —P(p). ~t<p<l. (99)
el

T

The function Fy(t) is obtained by using a Gauss -Jacobi-type quadrature formula
(Erdogan er al., 1973) and solving the singular integral eqn (99) together with the additional
condition F,(I) = 0, to account for the boundedness of ¢(f) at r = b.

The mode [ stress intensity factor at the crack tip « is defined by

K(a) =lim2"*(a—r) "al(r,0) (100)
and can be expressed by
K(a) = p* im 2" (r—a) "p(r) = p*as"F (1), (101)

where ¢, = (h—a)/2. The formula given by Krenk (1975) is used to obtain Fy(—1).

RESULTS AND DISCUSSION

For each of the four different types of crack configurations considered in this paper
the stress intensity factors, interfacial stresses and the stresses acting on the crack plane
= =0 and the plane = = h/2 are given. Although it is not possible to present results to take
into account all the different effects various material parameters have on the results, the
stress intensity factors are plotted for cracks of different size for different ratios of shear
moduli. The Poisson’s ratios were taken as v, = v, = 0.25 and p(r) = ’.(r) = a, given by
eqn (A7), the uncracked matrix stress for all the numerical examples. The stress fictds are
presented for a SiC/CAS calcium aluminosilicate glass ceramic reinforced with silicon
carbide fibers with the following material parameters (Danicl e al., 1989)

E, = E; = 207 GPa (30.0 x 10° psi). E, = E. = 98 GPa (14.2x 10° psi)
vo =1 =025, v, =v, =025 V=04 (102)
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Fig. 3. Stress intensity factors for the internal annular crack with inner crack tip away from the
interfuace (Case I), a'b = 0.5, d/b = 0.9.

For these material values ji = 2.1127 and a/b = 0.6325. Equations (4)-(6) and (10)-(12)
are used to determine the required stresses. The results for the stresses presented are
normalized with respect to the remote matrix stress o, i.¢. ¢,.(a, z) = 6,.(a, 2)/0, ctc.

For Case I, the internal annular crack with inncr crack tip away from the interface,
the normalized stress intensity factors are defined by

K(c K(d
K'()= ;—~~(1—(-)3 =F (- K({d)= ~g,-!5 = —F(1). (103)

|
ol Ood,

The normalized stress intensity factors given in Fig. 2 are for the ratios a/h = 0.3 and
¢/b = 0.4 while in Fig. 3, a/h = 0.5 and d/h = 0.9. As expected when the crack size is very
small. i.e. when ¢/d = 1.0, K’(¢) and K’(d) - 1.0, which is the result for the case of a Griffith
crack in a homogeneous, isotropic elastic matrix in plane strain and hence the stress intensity
factors are not influenced by the presence of the fiber or the curvature of the model for all
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values of ji. For a given crack size, i.e. when dfb is held constant in Fig. 2 and ¢/b is held
constant in Fig. 3, K'(¢) and K’ (d) decrease with increasing i, due to the increasing stiffness
of the fiber. From Fig. 3 it is also noted that when the fiber is weaker than the matrix, ie.
<1, K'(c) > K'(d) which indicates that the crack would propagate inward toward the
center of the fiber. The cffect of the stiffness of the fiber can also be observed in Fig. 3,
where d/b is held fixed and ¢ — «, from the fuct that when i > 1, K7(¢) < K'(d) and when
<1, K'(¢) > K'(d). The stress fields for the SiC/CAS composite are given in Figs, 4.6
for theratios ¢/b = 0.7 and d/b = 0.8, The interfacial radial stress 6, (a, =) attains a maximum
value at the crack plane = = 0, then decreases due to the opening of the crack before
reaching the remote interfacial value. The tenstle radial stresses near the crack plane could
lead to interfacial debonding. The interfacial shear stress 6,.(a, 2) is zero at the crack plane
due to symmetry considerations and changes sign before reaching o maximum value at
xa/S. the region where 6,,(«, 2) is a minimum. The axial stress distribution (Fig. 5) on the
crack planc shows the singular behavior at the crack tips and the discontinuity at the
interface while the stresses on the = = h/2 plane (Fig. 6) are nearly unperturbed by the
opening of the crack.
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Fig. 5. Normalized axial stress on the crack planc of the SiC/CAS composite, Case | crack con-
tiguration, ch = 0.7. dib = 0.8.
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For the internal annular crack with inner crack tip at the interface, i.e. Case II, the
normalized stress intensity factors are defined by

{ (dd
Ka) = a(\f:{)n =p*F.(-1. K= A '): =

até 2

R NI R (104)

auu'

The crack tip « has a squarc-root singularity while ff takes the values —0.3304, —0.4295,
—0.5, ~0.5755 and —0.7149 for ji = 7.0, 2.0, 1.0, 1/2 and /7, respectively. As expected,
the singularity increases as the stiffness of the fiber decreases. Figure 7 shows the normalized
stress intensity factors for afh = 0.5. [t is not possible to compare K'(a) for different ratios
of /i since the crack tip singularity at a is dependent on i For a given value of 4, K'(a)
increases as the outer crack tip approaches the boundary. Only for i = 1.0, when d = a,
K'{u) and K'(d) = 1.0, the reason being that K'(¢) and K'(d) ure dependent on ff as
indicated by eqn (104), At the outer crack tip K'(d) increases with decreasing j since the

4 4
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0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 08 09 1.0
(a) d/ib (b) d/b

Fig. 7. Stress intensity factors for the internal annular crack with inner crack tip at the interface
(Case ), a/b =05,

SAS 28:1-2
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Fig. 8. Normalized interfacial stresses of the SiIC.CAS composite, Case I crack contiguration.
dib =0.9.

outer crack tip singularity is independent of ji. Figures 8 -10 show the stress fields for the
SiC/CAS composite for a ratio of d/b = 0.9, where for the material properties given by eqn
(102), i = —0.4242. The interfacial stresses are given in Fig. 8, where both stresses are
singular as the crack planc is approached. The stress 6,,(a. 2) shows the effect of the crack
opening up by the drop in stress prior to attaining the remote stress value, while 6,.(«, 2)
decreases monotonically to zero away from the cruck planc. In Fig. 9, 6..(r.0) shows the
expected singular behavior at the crack tips while in Fig. 10 the stresses are once again quite
close to the far field stresses.

For Case I11, the annular edge crack with the inner crack tip away from the interface,
the normalized stress intensity factor is defined by

K'(c) = K(‘.); = Fy(-1). (105)

I
Gyl

Figure 11 shows K’(¢) for the ratio a/h = 0.5. When the crack size is very small (i.e. ¢/b -
1.0), K’(¢) — 1.42 and once again the stress intensity factor is not sensitive to the presence
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Fig. 9. Normalized axial stress on the crack plane of the SiC/CAS composite, Case Il crack
conliguration, d'6 = 0.9.
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of the fiber. In eqn (105) the normalizing factor contains the term a} * where a, is half the
crack length. If (2¢,)' * instead of «} * were used to evaluate K'(¢) then K7(¢) = 1.0 as ¢/h —
1.0, since the two adjoining edge cracks from two adjacent cylindrical cells would then
model the case of a Griftith crack in a homogencous, isotropic elastic matrix under plane
strain conditions. The stress field for the SiC/CAS composite is given in Figs 12-14 for
¢/b = 0.7. The behavior of the interfacial stresses 6,,(a. 2) and 6,.(a, 2) is similar to that
shown in Fig. 4 for Case [ 6,(¢.2) attains a maximum value at the crack plane and
decreases before attaining the far-ficld interfacial value. The shear stress d,.(«a. 2) s zero
when = = 0 and changes sign before reaching a maximum value at xa/3. The axial stress
on the crack plane given in Fig. 13 shows the discontinuity of stress at the interfuce and
singular behavior at the crack tip. In Fig. 14 the stresses on the plane - = 4/2 shows the
effect of the edge crack, since the remote stress field given in Appendix A shows that there
is no shear stress and that the axial stresses are constant.

Finally for Case 1V, the annular edge crack with inner crack tip at the interface, the
normalized stress intensity fuctor is defined by

o>

s
B>+ 00
TR ®E
[T T
~ N — =
~~
[

K'(c)

c/b

Fig. 11. Stress intensity factor for the annular edge crack with inner crack tip away from the interface
(Casc II1), a'h = 0.5.
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Fig. [5. Stress intensity factor for the annular edge crack with inner crack tip at the interface
(Case [V).
. K(a)
Kiay= -y = pEE (=), (106)
Ty

The normalized stress intensity Factor K'(a) is given in Fig. 15 and, similar to Case {I,
it is not possible to compare K'(«) for ditferent ratios of i since the crack tip singularity at
a depends on i The interfacial stresses given in Fig. 16 have the same behavior as the
interfacial stresses given in Fig. 8 for Case 11 The radial stress 6,,(a, 2) attains the remote
stress value at a distance approximately one fiber diameter away from the crack plane.
When approaching the crack plane 6,(a, 2) first decreases due to the presence of the crack
and then exhibits singular behavior as the crack tip is approached. The shear stress 4,.(a, 2)
18 zero at a distance T 3a and keeps increasing as the crack tip is neared till it becomes
unbounded. Figure 17 shows the axial stress distribution in the fiber which is singular as
the interface is approached. The stress field on the plane 2 = b/2 shown in Fig. 18 is
perturbed from the remote stress field due to the presence of the crack.
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Fig. 16. Normalized interfacial stresses of the SiC:/CAS composite. Case 1V crack configuration.



62 A. C. WUEYEWICKREMA and L. M. KEeEr

5
1) G, (r.0
A 22(7.0)
e
e
)
o
i
N
=
s
T
(@]
=z
2 ' . . —

0.0 0.2 0.4 0.6 0.8 1.0

r’'a

Fig. 17. Normalized axial stress on the crack plane of the SiC CAS composite, Case IV crack
configuration.

3
. P—-—v‘“\\
w
3 . B.(r.b/2)
v
—
[72]
Q
L
N
2
=
o
Q B.u(r.b/2)
0 LS L g L4
0.0 0.2 0.4 0.6 0.8 1.0
r/b
Fig. 18. Normalized stresses on the = = /2 plane of the SiC,CAS composite, Case IV crack
configuration.

Acknowledgements—The authors are pleased to acknowledge support from the Air Force Office of Scientific
Rescarch under Grant AFOSR-88-0124. They are gratetul for helpful discussions with Professors J. D. Achenbach
and [. M. Danicl during the course of this rescarch and to Lt Col. George Haritos of the AFOSR for his
encouragement and covperation.

REFERENCES

Aveston, J., Cooper, G. A, and Kelly, A. (1971). Single and multiple fracture. In Conf. on The Properties of Fiber
Composites, National Physical Laboratory, Guildford, Surrcy, pp. 15-26. IPC, Guildford, U.K.

Aveston, J. and Kelly, A, (1973). Theory of multiple fracture of fibrous composites. J. Mater. Sci. 8, 352-362.

Budiansky. B.. Hutchinson, J. W._and Evans, A. G. (1986). Matrix fracture in fiber-reinforced ceramics. J. Mech.
Phys. Solids 34(2), 167-189.

Duniel, . M., Anastassopoulos, G. and Lee, J.-W. (1989). Experimental micromechanics of brittie-matrix com-
posites. In Micromechanics : Experimental Technigues (Edited by W. N. Sharpe Jr), AMD Vol 102, pp. 133
146. ASME. New York.

Erdclyi. A.. ed. (1954). Tables of Integral Transforms, Vols | -2. McGraw-Hill, New York.

Erdogan. F. and Gupta. G. D. (1972). On the numerical solution of singular integral equations. Q. Appl. Math.
30, 533 -547.



Matnix fracture in fiber-reinforced composites 63

Erdogan. F., Gupta. G. D. and Cook. T. §. (1973). Numerical solution of singular integral equations. In Mechanics
of Fructure 12 Methods of Analyvsis and Solutions of Crack Problems {Edited by G. C. Sih). pp. 368-425.
Noordhofl. Levden.

Erdol. R. and Erdogan, F. (1978). A thick-walled cylinder with an axisymmetric internal or edge crack. ASME
J. Appl. Mech. 48,281 -286.

Guo. Y. C.. Mai, Y .-W. and Cotterell, B. (1988). Fracture of fiber-reinforced materials. Z4 MP 39, 550-572.

Hill. R. {1964a). Theory of mechanical properties of fibre-strengthened materials: L. Elastic behaviour. J. Mech.
Phvs. Solids 12, 199-212,

Hill, R. (1964b). Theory of mechanical properties of fibre-strengthened materials: 1. Inelustic behaviour. J. Mech.
Phys. Solids 12, 213-218.

Jones. R. M. (1975). Mechanics of Composite Materials. Scripta, Washington.

Keer, L. M., Freedman, J. M. and Watts, H. A. (1977) Infinite tensile cylinder with circumferential edge crack.
Lett. Appl. Engng Sci. 8, 129-139.

Krenk. 3. (1975). On the use of the interpolation polynomial for solutions of singular integral equations. Q. App/.
Math, 32, 479-484.

Love. A  E. H. (1944). A Treatise on the Mathematical Theory of Elasticity. Dover, New York.

Marshall. D. B.. Cox. B. N, und Evans, A. G. (1985). The mechanics of matrix cracking in brittle-matrix fiber
composites. Acta Merall. 33(11). 2013-2021.

Marshall. D. B. and Evans. A. G. (1985). Failure mechanisms in ceramic-fiber ceramic-mutrix composites. J. Ant.
Ceram. Saoc, 68(5), 225-231.

McCartney. L. N. (1987). Mechanics of matrix cracking in brittle-matrix fiber-reinforced composites. Proc. R.
Soc. Lond. A09, 329 -350.

McCartney, L. N. (1989). New theoreticul model of stress transfer between fiber and matrix in a uniaxially fibre-
reinforced composite. Prac. R. Soc. Lond. A428, 215-244,

Nied, H. F. and Erdogan, F. (1983). The elasticity problem for i thick-walled cylinder containing a ciccumferential
crack. fur. J. Fracture 22, 277-301.

Prewo, K. M. and Breanan, J. §. (1982) Silicon carbide yarn reinforced gliss matrix composites. J. Mater. Sci.
17, 1201 -1206,

Sigl. L. S. and Evans, A, G. (1989). Effects of residual stress and frictional sliding on cracking and pull-out in
brittle matrix composites. Mech. Mater. 8,1 -12.

Smith. G. E. and Spencer, A J. M. (1970). Interfacial tractions in a fiber-reinforced clastic composite material.
J. Mech, Phys. Solids 18, 81100

Steif, P. S, (1984). Stiffness reduction due to fiber breakage. J. Comp. Mater. 17,153 172,

Timoshenko, 8. B, and Goodier, J. N (1970), Theory of Flasticity, 3rd edn, McGraw-Hill, New York.

Wijeyewickrema, A, C., Keer, L. M Hirashima, K. and Mura, T. (1991) The annular crack surrounding an
clastie fiber in a tension ficld, Int. J, Solids Structures 27(3), 315 328,

APPENDIX A
Stress ficlds, when the fiber and matrix in the concentric cybinders model are subjected to a uniform
longitudinal tensile strain gy at 2 = £ % in the absence of the annular crack and the outer matrix surface is stress
free, are:

al(r) =a* {AD)
amir) =a*® (A2)
ol {r} = Egey+2v,0* (A3}
o {r) =0 (Ad)

aM(r) = —o* w,‘f:.,_ |__{,_:A AS
= P . (AS)
Bhir)= —o* —-—~a~i~ 1 Al A6
(L = h’-a’ + r: ( )

el (r) = Eg,=2v,0* (5.1”) (AT)

al(r)=0 {A8)

where

Zea(vg—vi )V,

a* = —
Vikpo + Valkpo+ Lin,

(A9)

and Vy = b V= L= Vi ko = po/(1=2v,), koo = /(1 =2vy) and . v and £ are the shear modulus, Poisson's
ratio and Young's modulus, respectively. The superscripts and subscripts 0 and 1 refer to the fiber and matrix,
respectively.
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APPENDIX B
The functions R, (i = 1 3)and R., (i = 2, }) appearing in eqns {54) and (81). respectively, are given by

Pll
Ry =",
" 0 (B1)
l PHQ:)
Riy=—| Pa——— 1}, B2
12 l( 2 0, (B2)
I P.:Q: ( o Qé)
Riy=——| P ——L54p | -E2+ 5] 3
. x[ . Qi " o8 Q? (B )
P,
Ry = =2, (B4)
t
{ PO
Ruy= = Py 32E2)
: ,( T, ) (BS)
where
*Pyy = Al = - @ i+ R —ad U —a) (B6)

Pro= =200 =v M =@ 2+ R =) =3+ RN+ 1= 20 +p o e —ad(r + 0= 20y~ (r—a)*]). (BT)

Pl —v) = —din, ~ v ’2"(1)*‘12:[““ +2vid _2"|)“ +(1 “I”((r“l)l’nx ""(’*""-’J”I’n;

+Hr - +0=2a) - (r—a)]p,, ). (BR)

Poo= =2{0=v ) {a+n U +an 320 ~r -1, {BY)
Povo L=y H2h ~r=np, 0 #3350 U +in ], (BI1D)
. - . ‘ l ‘ S 7"‘ S l YD
Pin =GR gy <[54 T vy (1 + 240)] 20, (BLL
3 R B 6 1 . . -
Piu = — ,’I{(Z‘} + 154 =y (9 + 20+ 0 S+ 7@ = v (L + 2]+ i +x0)ih, (B12)

9/1 !
P = i(’: - l?)<12 +rpb S = D+ e (=208 +[(19 = 6318 —v (15 =2641) 2 —dv (i + i,
(B13)

3 30 / Y 3
= h+N . AL N B Ty —dy 15
Pru 8("+h")[(: r +b);’ b+ (r: 2 * 2!3)/-] 4ah“5+7ﬂ’ volt+ 2]

3
+ g“) {7 —193)—4dv (1 ~40)), (BIy)
[?

, 31N . .
Pru = (1= )(l "‘K|;'\'|){ll+(i; -J-r)(u+:\',.)(l+u~,). (B15)
Qi = “2(!—"1)(32+K9:)H"}'f;’(:)- (BI())
, R
Q: = U _"x){“ "'3}.)“ ‘Kr)""n)/’“‘*‘ ,h(!}*”cu)(l +ﬁ~l’}- (817)

i
Q\ =(l""l){uj(l_l"')(-([""[2)(5"‘8"1»"1)"“2["::(5“2l2}+vt(2“51})l:‘
LA TRP DT Sy ) (144K}, (BIS)
"-i;:}:( —1CHE — Ry )+ i‘é}y,(,ﬂ‘l—l\" fiky ) §
The functions S, = 1..... 6yand T,,. 4 = 1 -3) required to define 14 (7, 1) in eqn (55) are cxpressed as

e l
R 11 2 S BIY
Sn Qi (r+1=2u° (8%
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(Y =g)(r—a)

S":(ﬁ+xo)(|+,zx.)¢r+z-2u)"“"

S = —(l=g)r—a)’

BT Eerg U r )t i=2ay "
PI.‘Q: l

Sw=- 07 (r+1-2a)

5. - —(l-i)r—a)

T T O I
~(1=D)

S”,= a [

NasngU+ann’

P Q@ 1
=g (-6 ) e
—(1=ji)(r—a)

T = 2pa+R (L +4iny)

tate

S (I-pr=—a)y}
LTV PR T] U NS TG R LA

The functions Sy, (i = 1,2) required to define 1% (r, 1) in eqn (82) are given by
4 4

P..Q, |
Sy =~ _::?; I
Qi Qb-r-n
-1
AP FSN TRy R Lt
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