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Abstract-A linear elastil; fral;ture mechanil;s analysis of matrix cral;king in a brittle matri, uniaxially
fiber-reinforl;ed wmposite due to uniform longitudinal strain is presented. The nmcentril; circular
cylinders model is used while perfect bonding is assumed at the tiber matri' interfal;e. The a,isym­
metric problem of an elastic tiber surrounded by the elastk matrix containing an annular .:rack is
formulated in terms 01''1 singular integral equation of the tirst kind with a ClUchy-typc kernd. Four
possible cral;k contigurations arc considered as follows: (a) internal annular crack with inner crack
tip away from the interfal;e; (b) internal annular crack with inner cral;k tiP at the interface; (c)
annular cdge crack with inncr crack tip away from the interfacc; ld) annubr edge crack With inner
crack tip at the interface (fully cracked matrix). Stress intensity factors arc gIven for a wide range
of crack siles for ditferent ratios of shear moduli. Stress lields are presented for a typi.:al brittle
matnx tiber-reinforced composite. SiCCAS calcium aluminosilicate glass ceramic reinft'n:ed with
silicon carbide tibers.

INTRODUCTION

The mechanics of brittle matrix fmcture in uniaxially fiber-reinforced composites loaded
by uniform longitudinal tensile strain is considered ill the present analysis when the fibers
arc perfectly bonded to the matrix. 1'ht: high-strength libers which reinforce the brittle
matrix have in most instances a fracture strain much higher than that of the matrix and
the lirst matrix cracks appe.tr in a plane perpendicular to the direction of loading. This
phenomenon has been observed in experiments carried out on different m'lterials. In par­
ticular, Prewo and Brennan (19K2), Marshall and Evans (19g5) and Daniel ('I al. (1989)
have conducted experiments on glass ceramics reinforced by SiC fibers.

The initial theoretical works on this important problem of brittle matrix fracture were
by Aveston el al. (1971) and by Aveston and Kelly (1973), where various assum:Jtions were
m'lde to f'lcilitate the analysis. Subseq lIent work in this area is dlle to Marshall el al. (1985),
Hudiansky ('I al. (19K6), McCartney (1987,1989), Gao t!1 al. (1988) and Sigl and Evans
(19K9). An approximate analytic method was employed by McCartney (1989) to investigate
matrix cracking with perfect bonding between the libers and the matrix and also with
fractional slip at the interface. Recently, Wijeyewickrema dal. (1991) considered the case
of matrix cracking when a single elastic liber is perfectly bonded to a surrounding unbounded
clastic matrix.

The chief objective of this paper is to present a rigorous analysis of the problem of
brittle m.ltrix fracture when there is perfect bonding at the interface, within the context of
linear elastic fracture mechanics (LEFM) where the correct nature of the singular stress
fields is preserved.

The problem of a thick-walled clastic cylinder with an annular crack considered by
Erdol and Erdogan (1978) and by Nied and Erdogan (1983) corresponds to the case where
the fibers are replaced by cavities. The solid elastic cylinder with an edge crack investigated
by Keer el (fl. (1977) corresponds to an clastic fiber with the same material properties as
the matrix.

FORMULATION OF PR08LEM

It is well known through experimental observations that in general the fibers in a
uniaxial fiber-reinforced composite are not distributed in any particular order. In theoretical
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Fig. I. An annular m"tri\ cr"ck surrounding th..: el,lstic tih..:r. Appro.\im"tilln tIl th..: ,,,s..: of"
h..:\"gon,,1 array "f tihcrs in a m"tri\ wh..:r..: th..: 1."JI1centric circuI"r cylllld..:rs l1l\ldd r..:pr..:scnts a unit

cd I.

consid\:rations, to owrcom\: this hwk oforlkrly distrihution oflih\:rs, an onkrly distrihution
of lih\:rs stKh as a squar\: or h\:xagonal array is assum\:d (Jon\:s, 1(75), Wh\:n a h\:xagonal
array of tih\:rs is assunwd, du\: to \:onsilkrations of symm\:try it is suflki\:nt tot:onsilkr th\:
unit celioI' a fiher surroul1lkd hy a tuhe of matrix whit:h has a hexagonal t:ylinlkr for
the outer surfat:e, When this hexagonalt:ylindrical surfat:\: is approximated hy a circular
cylindrical surface of equal cross-sectional area so as to make the g\:ollletry of the probkm
analytically kss complex, the concentric circular cylinders model results, This axisymmetric
model has he\:n used hy many researchers investigating the mechanit:al behavior of com­
posites under l'lI1gitudinal loading (Hill, I964a,h: Smith and Spent:er, 1970; Steif, I9X4:
Budiansky ('( al.. 19X6; Gao ('( al., 19XX; McCartney. 19X9: Sigl and Evans, 19R9).

The wncentrit: eylinders model and the cylindrit:al polar wordinate system (r, 0, =)

used in this analysis is shown in Fig. I. where an infinitely-long elastit: tiher of radius a is
perfectly bonded to the clastic matrix which has an out.:r radius h. When a uniaxial tiba­
reinforced composite whkh has a fiber volum.: ratio of VI is consilkred. h = al V,.' ~. Matrix
cracks appear at a uniform longitudinal t.:nsik strain 1;0 applied to the system at == ± 'l_.

The crack plane which is normal to the =axis is taken as th.: == () plane. The inner and
outer radii of th.: annular crack are c and d, resp.:ctively (tl :::; C < h, a < d:::; h).

When the undamag.:d composit.: sp.:cimen is load.:d longitudinally, there is radial
contraction du.: to th.: Poisson's ratio efli:ct. Prior to the formation of matrix cracks, th.:
.:xt.:rnal surfac.: of the entir.: lat.:ral surface of the specim.:n, and h.:nc.: of each concentric
circular cylindrical cell. will be stress free. When th.: applied strain reaches the matrix
fracture strain. matrix cracks appear and th.: external surface of th.: circular cylindrical cell
may not be stress fn.:e. since the matrix cracks will produce radial stresses that arise at th.:
outer boundary. This situation can be physically visualized as the superposition of two
problems: the undamaged uniaxially-loaded composite specimen and a matrix cracked
specimen loaded solely on the cracked surface. The undamaged specimen problem has the
outer boundary stress free: however, the matrix crack problem will have a zero radial
displacement at the outer boundary. The superposition of these two problems will correctly
model the case of interest here.

In the first problem the concentric cylinder model in the absence of the annular crack
is subjected to the uniform longitudinal tensile strain f. n, while the external surface is
unconstrained. This problem can be solved with case and the complete stress field is given
in Appendix A. The relevant matrix stresses required for the second problem arc rr ):(r) and
rr;:(r) given by cqns (A 7) and (AR), respectively. Since rr;,(r. 0) is identically equal to zero,
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the self-equilibrating stresses applied to the crack surfaces in the second problem are those
equal and opposite to the stresses 0";Ar. 0).

The analytical approach and the notation adopted in solving the problem where the
crack surface tractions are the only external loads. is for the most part similar to that
employed previously by Wijeyewickrema et (11. (1991) to solve the problem of an annular
crack surrounding a single elastic fiber embedded in an elastic full space. For problems where
both the geometry of the problem and the loading is axially symmetric the nonvanishing
displacement and stress components 11,. II:. 0",,, (J,IIJ. 0":: and 0",: can be expressed in terms
of Love's stress function x(r. =). which is an axisymmetric biharmonic function (Love. 1944.
p. 276: Timoshenko and Goodier. 1970. p. 381). Since == 0 is a plane of symmetry. in
what follows the upper half of the representative cell =~ 0 is considered.

For the fiber. Love's stress function and the corresponding displacements and stresses
which are relevant '1fe given by

X"(r. =) == [r [/1 (s)l,,(rs)+J,(s)r.l'IJln)l sin (=.1') ds + frIdp)p{21'0 + =1') e :p J,,(rp) dp.
1t .. 0 l)

( I)

") I'II -",,(r, =) =
1t II

+ ft /1 (1')1'4[( I - =1')Jo(rl') - (1 - 2\'0 - =p)J I (rl') rl'l e:I' dl'. (4)
o

(J;~(r. =) = 2 ft. (II (s)lll(rs) +1': (s)[2(2 - \'o)lo(rs) + rslt (r.l')]}sJ cos (=s) ds
1t n

where /;C~), (i = 1.2, J) are unknown functions. J.( ) is the Bessel function of the first kind
of order fl. In { ) is the modified Bessel function of the first kind of order 11 and Jlo and 1'0

are the fiber shear modulus and Poisson's ratio, respectively.
For the m:ltrix region. Love's stress function and the corresponding displacements and

stresses that arc relevant are given by
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~ J4 <
X' (r,:) = ~ I) U~(.~)/lI(rs)+/,(5)r5/, (rs) +/~(5)Ko(r5) +j~(5)r5Kl (r5)] sin (:5) d5

+ [" f~(p)p('1\'I+:p)e-:PJo(rp)dp. (7)
,,"

u)(r,:) = ~I ~2 f'lI~(s)/0(r5)+f5(S)[4(1-\'I)lo(rs)+rs/,(rS)I+j~(S)Ko(rS)
-II, \.rr 0

+/';(5)[ -4( 1- \'dKIl(rs)+rsKdrs)]] .1'" sin (:.1') ds

-r.I~(p)p '[2( 1-\'''+:1'1 e-:PJo(rl') dP}. (9)

~ f'(1,I,(r.:) = - : (,(5)[ -I,,(rs) +I, (rs)/r5j-f,(5)[( 1- 2\', )/o(n) +n/, (n)!
rr "

-.I;,(s)[ Ko(rs) + K drsl,rsj +f,(5)[( I - 2\', )Ko(n) - rsK I (rsms' cos (:s) ds

+ f' /,(I')I'.I[(I-:I')10(rl')-(1-2\'I-:I')J,(rl')/rl'lc :"dl'. (10)
o

+ f < j~(p)I'4( I+ :1') c :"Jo(rp) dl'. (II)
1I

+f,(.1')[ -r.l'Ko(r.l')+2(1- \'dK I (r.l')I:.I" sin (:s) ds+ f'J~(p)I'S:e :pJ,(rp) dp (12)
Il

where the functions};(.I'). (i =4..... 8) arc to be determined and K,,( ) is the modified Bessel
function of the second kind of order 11 where p, and \', are the matrix shear modulus and
Poisson's ra tio. respectively.

The perfect fiber-matrix bonding assumed at the interface results in the continuity
conditions

(1;~(II. =) = (1;,(0. =). «a. =) = (1;:<11, =). 0 ~ = < CIJ.

( 13)

( 14)
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As discussed previously. the boundary conditions on the external cylindrical surface
of the matrix are taken as

u)(b.=) =0. O~=<x.

On the plane == O. the following conditions apply

O'~:(r.O) = -p(r). c < r < d.

(15)

(16)

(17)

( 18)

1I~(r.O)=O. O~r~a. 1I~(r.O)=O. a~r<c. d<r~h. (19)

It is e'lsily verified from eqns (6) and (12) that eqn (17) is identically satisfied. From the
first part ofeqn (19) and eqn (3) it can be shown thatIl(P) = O. To formulate the problem
in terms of an integral equation a new unknown function ¢(r) which is related to the
gradient of the crack opening displacement is introduced as follows

JI, cl I
-l·~· , 1/: (r. 0) = ¢(r). c < r < c/.
-Vllr

It can be shown from eqns (9), (20) .tnd the second part of eqn (19) that

(20)

(21 )

The four boundary conditions at the interface eqns (13) and (14) and the boundary con­
ditions on the external surface of the matrix eqns (15) and (16) yield a system of six
equations for the unknown functions};. (i = 1.2.4.5,6,7) in terms of the unknown function
¢(r) and may be expressed as follows

10 (as)/. (s) +[4(1- vo)/o(as)+ as/, (as)]/2(S) - ji/o(as)/~(s) - ji[4( 1- v I )/0 (as)

+as/l (as)]/s(s) - fIKo(as)}~(s) + ji[4( 1-v, )Ko(as) - asK I (OS)]/7(S)

I fd=} r¢(r)h 2(r. s) dr.
s ,.

[-Io(as) + II (as)/as]/, (s) - [( I - 2vo)/o(as) +as/. (as)]/2(S)

+ [10 (as) -II (as)/as]/4(s) +[( I - 2v, )/0 (as) +as/I (as)]/s(s)

+ [Ko(as) + K I (as)/as]/6(s) +[- (1 - 2v, )Ko(as) +asK. (as)]/7(s)

(23)

1 I"= J r¢(r)hJ(r.s) dr. (24)
s c
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II (as)!1 (s) + [asln(as) +2( I - vn)/1 (as)]!1(S) -II (as)/./s)

- [asln(as) + 2( I - \'1 )/ 1(as»)f5(s) + K I (as)!~(s) + [asKn(as) - ~(I -I'I )KI (as)]!7(S)

I f"=.? , t¢(t)h.(t.s) dt. (:~5)

(26)

(27)

where Ii = lIn/III and the functions hI' (i = 1. ...• 6) arc given by

(28)

(29)

(30)

(31 )

(32)

(33)

Infinite integrals required in deriving eqns (22) to (27) can be found in Erdelyi (1954).
Solving the system of six equations given by eqns (22)-(27), f, (i = I. 2. 4-7) can be
expressed as

. i" I ~ A,,(s)h,(t.s)
J,(s) = I¢(t) dl J L. ~- -- - •

, .I' i- I 11(.1')
(34)

where Ms) is the determinant and A'i' (i = 1,2.4-7;j = 1-6) are the appropriate elements
of the adjoint of the coefficient matrix of eqns (22)-(27). From eqn (18), which corresponds
to the tractions that are applied to the crack surface. after substituting for J,:, (i = 4-8) from
eqns (34) and (21). the following integral equation is obtained:

where

~ fJ [_.~ +k(r, I)J ¢(/) dl = - per), C < r < tI
1t J I-r

mer, I) - I mer. f)
kl(r.t) = + ------.

I-r f+r

(35)

(36)

(37)
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{

£(r/t)

m(r. t) = r (t 2 - r 2
)

£(r.'r)+ ------ K(t/r).
t rt

r < t

r > t
(38)

(39)

/(2(r. t. s) = _1- {(±AJlh,) /0 (rs) + (± A 5,h,) [2(2 - \'1 )/o(rs) +rs/I (rs)]
6(s) I_I ,=1

+ (± A 6,h;) Ko(rs) + (± A "h,) [- 2(2 - v I )Ko(rs) + rsKI(rs)]}. (40)
1= I 1 02 1

where K( ) and £( ) are the complete elliptic integrals of the first and second kind.
respectively. The location of the crack in the matrix has a direct bearing on the solution of
the singular integral equation of the first kind. eqn (35). When both crack tips c and dare
located in the matrix. eqn (35) is solved under the crack closure condition

f
"
, ¢(r) dr = O. (41 )

obtained from the second eqn of ( 19) and eqn (20). It is noted that the physical significance
ofeqn (41) is that the crack tips are closed at c and d.

The following crack configurations are investigated in det'lil in the present analysis:

Case I: Internal .tnnular crack with innt:r crack tip away from the interface.
Clse II: Internal annular crack with inner crack tip at the interface.
Case III: Annular edge crack with inner crack tip away from the interface.
Case IV: Annular edge crack with inner crack tip at the interface (fully cracked matrix).

CASE I: INTERNAL ANNULAR CRACK WITH INNER CRACK TIP AWAY

FROM THE INTERFACE

When the crack tips are located such that a < c < d < b, the dominant kernel in the
integral eqn (35) is the term I/(t - r). The kernel k I (r, t) has a logarithmic singularity of the
form log It - rl and k2(r, t) is bounded in the interval c ~ r, t ~ d. The solution of eqn (35)
is of the form

where 9 I (t) is a bounded function. Normalizing the interval (c. d) by defining

(42)

d-c d+c
r = -2- P+ -2-' (43)

d-c
p(r) = P(p). K(p,t) = -2-k(r.t),

the following equations are obtained.

(44)

(45)
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Ifl [I . ] F\(r)... ..-+K(p.r) 'I"dr=-P(p).
1t·1 r-p (I-r-)-

-1<p<1 (46)

(47)

Here eqn (47) corresponds to the crack closure condition eqn (41) since the crack tips are
closed at c and el. The singular integral eqn (46) is solved together with the additional
condition eqn (47) by using a Gauss-Chebyshev type quadrature formula (Erdogan and
Gupta. 1972).

The mode r stress intensity factors at the crack tips c and d arc defined by

(48)

(49)

and can be expressed in terms of FI(r) as follows

I\(d) = -lim /2(d-r)(/>(r) = -i/: ~FI(I).
r .eI

(50)

(51 )

where i/, = (el - c)/2, The compact formulae given by Krenk (1975) is lIsed to obtain F, ( - I)
and F I ( I).

CASF II: INTERNAL AN:-lULAR CRACK WITII INNER CRACK TIl' AT TilE INTERFACE

When the inner crack tip is at the interl~lcc. i,e. c = i/. k~(r. I) given by cqn (39) is no
longer bounded for all r, I in the closed interval [c. ell and hence the solution of eqn (35) is
no longer described by eqn (42), By adding and subtracting the asymptotic value of
[~(r. 1• .1') for large values of .\', from the integrand in eqn (39), k~(r. I) may be expressed as

where

k~l(r,/) = f' [[~(r.l.s)-f2'(r,I.·\')lds+/~/(r,/),
I)

(52)

(53)

(r +1 - :!lIh

2Jrl
(54)

k~, (r. I) = /'~: (r. I).

I {cn (', (r-tl) 2(',(r-{/)~ }
1\' (r. t)=- - ,+ - - \.

.. 2Jrl (r+I-2i/) (r+I-2a)- (r+I-2a)

(55)

(56)

(57)
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where R I,' T I ,. (i == I. 2. 3) and S I,. (i == 1. .... 6) are given in Appendix Band /\:, == 3 -4\',.
(i == O. I). In eqn (53). k:J (r. t) is bounded in [c, d] for all r, t and k zJr. t) is unbounded as r

and t approach a. The singular kernel k :,(r. t) is identical to that given by Erdogan et £II.
( 1973) for the corresponding plane strain problem and by Wijeyewickrema et £II. (1991) for
the case of an annular crack surrounding an elastic fiber embedded in an elastic full space.

Equation (35) can now be rewritten as

I f" </JU) I f" I f"- -dt+- 11(r.t)</J(t)dt+- Iz(r,t)</J(t)dt==-p(r), a<r<d
IT.,t-r IT" IT"

where

I I (r. t) == 2tk z,(r. n.
Iz(r, t) == k,(r. t)+2tk z/(r, t).

and where I,(r. t) is a Fredholm kernel.
The solutillll of eqn (59) is expressed as

(/J(t) == (d-t)'(t-a)"g,(t). a < t < cl

(59)

(60)

(61 )

(62)

and it can he shown (Erdogan ('t al.. 1973) th.1t the ch'lracteristic equations required to
determine :x and If arc given hy

where

cot n:~ == n. (63)

(64)

From eqn (63). :x == - ~ which is the expected square root singularity for the crack tip d.
Equation (64) is solved to determine the real constant 1/ which is a function of the material
properties of the fiber and matrix.

Normalizing the interval (a. d) by defining

d-a d+a cl-a cl+a
t== '2 r+ '2 • r== 2 p+ 2 .

per) == P(p),

eqn (59) can he expressed as

(68)

(69)

(70)

(71 )
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~f' {__I_-+L,(P.fHLz(P.f)}Fz(f)(I-fr(:+I)/ldr= -PIp). -I <p< I.
IT .1 r-p

(72)

Since the crack tips are closed at a and d. the crack closure condition (41) yields the equation

f I Fz(f)( 1- f)'(r + 1)I~ dr = O. (73)

A Gauss-Jacobi-type integration formula (Erdogan ct £11.• 1973) is used to solve the singular
integral equation with a generalized Cauchy kernel. eqn (72). together with the crack closure
condition. eqn (73).

The mode ( stress intensity factors at the crack tips d and (/ are defined by

It can be shown that

K(d) = lim .ii(r ~d)11;:(r. 0).
r-.I

K(a) = lim 2 1 z(a - r) /l11~:(r. 0).
,-c,

(74)

(75)

K(a) = 2 IzJI·(c-a)'.lh(a) = JI·lim2 Iz (r-a) /Ic/J(r) = JI·az'IFz(-I). (77)
'··C'

where

1* = Ji(1 +",L) {(3+2/!)«( +P"I)-(I + 2{l){Ji+ "o)}
J 2 (Ji+"o)(I+Ji",)sintr(I+{l)

(7X)

and az = (d-a)/2. (n calculating F z( -I) and Fz(l) a formula given by Krenk (1975) is
used.

CASE III: ANNULAR EDGE CRACK WITII INNER CRACK TIP AWAY FROM TilE INTERFACE

For this crack configuration where a < (' < cI and d = h the kernel kz(r, t) defined by
eqn (39) becomes unbounded for large values of s when rand t approach the boundary h.
After manipulating k z(r, t) similar to the procedure adopted in Case II. kz(r. t) is expressed
as

here

kz,(r,t) = f" (k2(r,t,s)-!?;"(r,t,s)jds+li/(r,tl.
()

e t ~h r -/h

ki' (r. t. s) = [R z~s + Rz11---j=:- --.
2'\1 rt

(7lJ)

(80)

(81 )

(82)
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k:,(r.n = t:,-r.(r./).

I { -I }1';~(r./) = r "b- _ .
2..../ rl - r 1

53

(83)

(84)

where R:,• (i = 2.3) and S:I' (i = I. 2) are given in Appendix B. In eqn (80). k:r(r./) is
bounded in [c. h1for all r. 1 and k :..(r. I) is unbounded as rand t approach h. The solution
of the integral equation which now has a generalized Cauchy kernel has no power or
logarithmic singularity at the end point which is on the boundary r = b. and the solution
is of the form

cP(f) = (I-(r I :g,(I). c < t < b. (85)

From eqn (85) it is seen that cP(I) is bounded at 1 = b. Normalizing the interval (c. b)
by defining

h-c b+c
r= 2 P+ -2-' (86)

h-c
I'(r) = P(I'). K(p. t) = . 2-- k(r. f).

the integral equation is obt.tined as

I fl [I . ] F,(t)
. +K(I'.t) (I ":)1/2 dt = -P(p).

n: I t-I' -t
-1<p<1.

(87)

(88)

(89)

The function F\(t) is obtained by using a Gauss-Chebyshev-type quadrature formula
(Erdogan and Gupta. 1972) and solving the singular integral eqn (89) numerically together
with the additional condition F,( I) = O. to account for the boundedness of cP(t) at 1 = h.

The moJe I stress intensity factor at the crack tip c is defined by

and can be expressed as

K(c) = lim J2(r-c)(/>(r) = ai 2FJ ( -I).r_,·

(90)

(91 )

where u\ = (h - d/2. Here too recourse is made to a formula given by Krenk (1975) to
obtain F.I ( - I).

CASE IV: ANNULAR EDGE CRACK WITH INNER CRACK TIP AT THE INTERFACE

(FULLY CRACKED MATRIX)

When c = a and d = h. on the plane: = O. stress is transferred through the fibers only.
The kernel k 2(r. f) given by eqn (39) is now expressed as

where

k:(r. f) = k2/(r. f)+k:,(r. f). (92)



54 A. C. WUEYEWICKREMA and L. M. KEER

k ~I (r, t) =f< [f~ (r, t, s) - f 1< (r, t, s) - f~ , (r, (, s )1 ds + 11/ (r, ()+ (: (r, t), (93 )
Il

k :.,(r, t) = 11.: (r, t) + I~: (r, I). (94)

The solution of the integral equation which now has a generalized Cauchy kernel is of the
form

(95)

From eqn (95) it is seen that ¢(t) is bounded at t = h. Normalizing the interval (a, h)
by defining

b-a h+a
t=--r+--

2 2'
h-a h+a

r =-..,-- p+ .., , (96)

h-a
p(r) = P(p), K(p, r) = .., k(r, I),

the integral equation is expressed as

(97)

(9~)

If I [ I +K(p,r)JF~(r)(l-r) 1~(r+I)/fdr=-I'<tI), -1<1'<1. (99)
1t 1 r-p

The fUI1l.:tion F~(r) is obtained by using .1 Gauss ·Jacobi-lype quadrature formula
(Erdogan e( al., 1973) and solving the singular intt:gral eqn (99) togetha with the additional
condition F~( I) = 0, to account for the bounded ness of !/>(t) at t == ".

The mode I stress intensity factor at the crack tip II is dc/ined by

K(a) = Iim21~(a-r) -fl(J";~(r,O)
r_11

and can be expressed by

K(a) = 11* lim 2' ~(r-a) -/11p(r) = II*a~/1 F~( - I).
' ...... d

where a~ = (h-a)/2. The formula given by Krenk (1975) is used to obtain F~( -I).

RESULTS AND DISCUSSION

( (00)

(101 )

For each of the four different types of crack configurations considered in this paper
the stress intensity factors, interfaci'll stresses and the stresses acting on the crack plane
: = 0 and the plane: = hl2 are given. Although it is not possible to present results to take
into account all the different effects various material parameters have on the results, the
stress intensity factors are plotted for cracks of different size for different ratios of shear
moduli. The Poisson's ratios were taken as 1'1) = I', == 0.25 and p(r) = 11;:(r) = 11 0 given by
eqn (A 7), the uncracked matrix stress for all the numerical examples. The stress fields arc
presented for a SiC/CAS calcium aluminosilicate glass ceramic reinforced with silicon
carbide fibers with the following material parameters (D,lniel et al., 19~9)

Eo =: Er = 207 GPa (30.0 x 10~ psi), E 1 = Em == 98 GPa (14.2 X 10' psi)

1'0 = 1'[ = 0.25, I', = I'm = 0.25, Vr = 0.4. (102)
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Fig. 2. Stress intensity factors for the internal annular crack with inner crack lip away from the
interface (Case 1l. a/h = 0.3. ell> = 0.4.
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Fig. J. Slress intensity factors for the internal annular crack with inner crad: lip away from the
inlerface (Case II. ail> = 0.5. tllh = 0.9.

For these material values {L = 2.1127 and alh = 0.6325. Equations (4)-(6) and (10)-(12)
are used to determine the required stn:sses. The results for the stresses presented are
normalized with respect to the remote matrix stress 0'0. i.e. c1,,(a.:) = O',,(a. :)/0'0 etc.

For Case I. the internal annular crack with inner crack tip away from the interface.
the normalized stress intensity factors are defined by

K(c)
K'(c) = --j' = F ,( -I).

O'oCiI -
( 103)

The normalized stress intensity factors given in Fig. 2 are for the ratios alh = 0.3 and
clh = 0.4 while in Fig. 3. alh = 0.5 and dlh = 0.9. As expected when the crack size is very
small. i.e. when c/cI- 1.0. K'(c) and K'(cI) - 1.0. which is the result for the case of a Grillith
crack in a homogeneous. isotropic elastic matrix in plane strain and hence the stress intensity
factors are not influenced by the presence of the fiber or the curvature of the model for all
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Fig. 4. Normalized interfacial slresses of the SIC;CAS composite. Case I crack configuration.
c/h = 0.7. ,Ih = O.s.

values of Ii. For a given crack sileo i.e. when tllh is held constant in Fig. 2 and elh is held
constant in Fig. 3. K'(c) and K'(tI) decrease with increasing Ii. due to the increasing stiffness
of the fiher. From Fig. 3 it is also noted that when the fiher is weaker than the matrix. i.e.
Ii < I. K'(c) > K'(tI) which imlic'ltes that the crack would propagate inward toward the
center of the liber. The clrect of the stitrness of the fiber can also he observed in Fig. 3.
where tllf, is held fixed and e -+ a. from the fact that when Ii > I. K'(c) < K'(tI) and when
Ii < I. K'(c) > K'(tI). The stress fields for the SiCjCAS composite arc given in Figs. 4·6
for the ratios ejh = 0.7 and tllh = O.H. The interl~tcial radial stress (i,,(a.:) attains a maximum
value at the crack plane: = O. then decreases due to the opening of the crack before
reaching the remote interfacial value. The tensile radial stresses ncar the crack plane could
lead to interl~lcial dehonding. The interfacial shear stress t1,,(a.:) is zero at the crack plane
due to symmetry considerations and changes sign before reaching a maximum value at
=:::aI5. the region where (i,,(a.:) is a minimum. The axial stress distribution (Fig. 5) on the:
crack plane shows the singular behavior at the crack tips and the discontinuity at the
inte:rface while the stresses on the: : = hf2 plane (Fig. 6) are nearly unperturbed by the
opening of the crack.

enen
w
a:
I­en
o
w
N
:::J«
~a:oz

2

rib

Fig. 5. Normalizcd a~ial strcss on thc crack planc of thc SiCiCAS composite. Case I crack con­
tiguration. c h = 0.7. dih = O.K.
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Fig. 6. Normalized stresses on the: = h '1 plane of the SiC CAS composite. Case I crack con·
figuration. c " = 0.7. c(" = 08.

For the internal annular crack with inner crack tip at the interface. i.e. Case II. the
normalizcd strcss intensity factors arc defined by

., K(a) •
l\. (a) = _II =II F:( - I),

(10a:
(104)

The crack tip c/ has a sqlwrc-root singularity while II takes the values -0.3304. -0.4295.
-0.5. -0.5755 and -0.7149 for Ji = 7.0. 2.0. 1.0. 1/2 and 1/7. respectively. As expected.
the singularity increases as the stiffness of the fiber decreases. Figure 1 shows the normalized
stress intensity factors for a/h =0.5. It is not possible to compare K'(a) for different nttios
of Ii since the crack tip singularity at a is dependent on Ji. For a given value of Ii. K'(a)
increases as the outer crack tip approaches the boundary. Only for Ii = 1.0. when c/- a.
K'(a) nnd K'(c/) - 1.0. the reason being that K'(a) .lOd K'(c/) arc dependent on IJ as
indicated by eqn (104), At the outer crack tip K'(d) incre<lscs with decreasing Ii since the

4 4

• TI=117
• Ji=1/2

3 + if =1

" II =2
• JI ..7

g 2 §: 2

5l:

: :5
5l:

~ ~ ~
• • • • -----0 0

O.S 0.6 0.7 0.8 0.9 1.0 O.S 0.6 0.7 0.8 0.9 1.0

(a) dlb (b) d/b

Fig. 7. Stress intensity factor~ for the internal annular crack with inner crack tip at the interface
(Case II), uth = 0.5.

SAS 28.1-f:
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Fig. 8. Normalized interf,H:ial stresses of the SiCCAS composite. Case II crack contiguration.
d/h = fl.\}.

outer crack tip singularity is independent of fl. Figures 8-10 show the stress fields for the
SiC/CAS composite for a ratio of d/h = 0.9. where for the material properties given by eqn
(102). {I = -0.4242. The interfacial stresses are given in rig. 8. where both stresses are
singular as the craek plane is approached. The stress ",,(a. =) shows the clTect of the crack
opening up by the drop in stress prior to attaining the remote stn:ss value. while ",,(a. =)

decreases monotonically to I.ero away from the crack plane. In Fig. 9. ",,(r.O) shows the
expected singular behavior at the erack tips while in Fig. 10 the stresses are once again quite
close to the far field stresses.

For Case III. the annular edge erack with the inner craek tip away from the interface.
the normalized stress intensity factor is defined by

., K(c)
1\ (e) = . I' = F,( - I).

alia, -
( 105)

Figure II shows K'(c) for the ratio a/h = 0.5. When the crack size is very small (i.e. c/h -+

1.0). K'(c) -+ 1.42 and once again the stress intensity factor is not sensitive to the presence

4

en O'..(r,O)
en
w 3a:
~en
0
w
N
~
c( 2
~
a:
0z

1.00.80.60.40.2
1+----.---.---r----r~--l
0.0

rib

Fig. 9. Normalized a)lial stress on the cra<:k planc of thc SiCCAS compositc. Case II cra<:k
conliguration. dh = 0.9.
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Fig. 10. Normalized stresses on the == N~ plane of the Sic/CAS composIte. Case (( crack con­
figuration. <if, = 0.9.

of the fiber. In eqn (105) the normalizing factor contains the term a\ 2 where a J is half the
crack length. If (2a ,) 12 instead of a\ 2 were used to evaluate K'(c) then K'(c) --+ 1.0 as c/h --+

1.0. since the two adjoining edge cracks from two adjacent cylindrical cells would then
model the case of a Grillith crack in a homogeneous. isotropic elastic matrix under plane
strain conditions. The stress field for the SiC/CAS composite is given in Figs 12-14 for
clh = 0.7. The behavior of the interfacial stresses 11,,(a.=) 41nd 11,:«(1.=) is similar to that
shown in Fig. 4 for C4Ise I; 11,,«(1. =) 41tt4lins ~t ma.'(imulll v4llue at the crack pl4lne and
decreases before attaining the far-liekl interfacial value. The shear stress 11,:«(1. =) is zero
when == 0 ~llld changes sign before re4lching a maximum value .tt ::::. a/3. The axi4l1 stress
on the crack plane given in Fig. 13 shows the discontinuity of stress at the interl~tce and
singular behavior at the crack tip. In Fig. 14 the stresses on the plane == h/2 shows the
ctfect of the edge crack. sinee the remote stress lield given in Appendix A shows that there
is no shear stress and that the axial stresses arc const4lnt.

Finally for Case IV. the annular edge crack with inner crack tip at the interface. the
normalized stress intensity factor is defined by

8

• JI =1/7
• JI=1/2

6 + JI =1
.. JI =2
• JI =7

:§: 4
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2

1.00.90.80.70.6
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db

Fig. II. Stress intensity factor for the annular edge crack with inner crack tip away from the interface
(Casc II I). a,f, = 0.5.
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Fig. 15. Stress intensity fa,tor for the annular edge crack wIth inner ,rack tip at the interface
(Case IV).

I\(a)
I\'(a) ='J = JI·F~( -I),

alla~

( 106)

The normalized stress intensity fa\:tor I\'(a) is given in Fig. 15 am!. similar to Clse II,
it is not possible to wmpare I\'(a) for dilli:rent ratios of Ji sin\:e the cra\:k tip singularity at
a depends on Ji, The interl;l\:ial stresses given in Fig. 16 have the same behavior as the
interfal.:ial stresses given in Fig, X for Case II, The radial stress O',,(a,:) attains the remote
stress value at a distalll.:e approximately one libel' diamcler away from the \:rack plane,
When approaching the \:ra\:k plane ",,(a,:) first de\:reases due to the presence of the cruck
and then exhibits singular behavior as the aack tip is approa\:hed, The shear stress 0',:«(/.:)

is zero at a distance ~ )a and keeps in\:reasing as the crack tip is neared till it becomes
unbounded, Figure 17 shows the axial stress distribution in the fiber which is singular as
the interface is approached. The stress tickl on the plane: = h/2 shown in Fig. IH is
perturbed from the remote stress field due to the presence of the crack.
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Fig. 16. Normalized interfacial stresses of the SiCCAS composite. Case IV cr:lck configuration.
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AI'I'ENOIX A

Siress lidds. when the fiber ami Illatri" in the concentric cylinders mudd arc subjected hI a unilllrm
longitudin.. ltensile strain I:" ,It: = ± Y. in the absence of the annular cr,lck and the outer matrix surface is stress
free. arc:

a;:(r) = a- (AI)

a,~,(r) = a- (11.2)

O':~(r) = E";:,, +21'"a- (A3)

a:~(r) = 0 (M)

11,~(r) = -O'-(hi ~a~)(1- ~-:.) (AS)

11'~J(r) = -a- (h/~-t?)(1+ !~) (11.6)

( a~ )O'],(r) = £,r.,,-2v,a- h:-':.:;;i (11.7)

O':,(r) =0 0 (AS)

where

2r..(I·,,-v,)V...
(A9)fI- =

V,,'k, I + V../k,.+ 1,'11,

and V, == u:/h~, V.. == 1- VI' k,. == /1./( 1- 1v.,). k" =0 /1.1(1- 11',j and /1, I' and £are the shear modulus. Poisson's
ratio and Young's modulus. respectively. The superscripts and subscripts 0 and I refer to the fiber and matrix.
resIX'Ctivcly.
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APPENDIX 8

The functions R
"

(i = I 3) and R" (i = 1.3) appearing in el.jns 15';, and (SI l, respectively. are given by

(81)

(82)

(B3)

(B5)

where

(86)

P, ,,i( 1- ",) = -';:"" 2Ii,·,( I -2",,)+/q -", + 2",(1 -2",)1: +( I -/il(r-<l)I',,, + (r+ 1-2(/)/".,

+[(r -<l)(r+1 211) -(r-II)'II',,,:. (ilK)

(B9)

(1l1O)

(1111 )

(BI2)

3 [(3 I I);' (I 3 S )/' ] 3PII.=-(Ii+",,)·--+- ,h+··--;+·_, 2 _·--(S+7/H-4",,(1+2/i)j
1I I r ",' rt 2r 2r ';(/h

Q. = (I-",){ I,(I-li): -(l-/i)(S+K"lI,'.!+2("lI(5-2Ii)+V,(2-Sli)1l
II"

3.. 3. . I
- .i~h(l-II·)(I-""",)+ i'6h,(II+l\o)(1 +//",);, (BlS)

The functions S", (i = I. .... 6) and T
"
. (i = 1..3) required to define t~· (r. t) in eqn (55) arc expressed as

P"Q: IS" = - .... ,----.-.---.;.
Qi (r+t-211)'

(BI\))
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(B~O)

-(I-}i)(r-u)1
5 11 = - ,p",.

. (}i+"o)(l +/l",)(r+I-2u)- -

-(I-}i)(r-u)
5,,= _ _ P,",

. 2(/l+"0)(1 +/l",)(r+I-2u) .

(B:!-l)
-(I-Ji)

5,. =.,( _ . )(1+ -. ,p,):-
- Jl+"o 11""

P" ( Q) Q~) 1
T" = ~ - Q, + Qf (r+I-2<1)'

(B:!6)

(B27)

The functions S1" (i = 1,2) required to define I~' (r,/) in eqn (82) are given hy

(B:!8)

(829)


